I work with classification of remote sensing images a lot both with supervised as well as unsupervised classification. Unsupervised classifications don’t need any external input where as supervised classifications need samples or training areas for an algorithm to learn. For processing remote sensing images, there are many proprietary software like ENVI, ERDAS, PCI Geomatica, Global Mapper, eCognition and many more. Even after paying thousands of Euros, classifications algorithm available in Costs-off-the-self (COTS) software is far from satisfactory.
Here is the little teaser of classification accuracy with many algorithms that are available in scikit-learn for a remote sensing imagery. In near future, I will blog with more illustration and with code. Till then go and make your hands dirty with Python and Scikit-Learn. Make that your new year resolution and trust me, you will thank me for that.
Here, algorithms hyperparameters were not optimally tuned hence superior machine learning algorithms like SVM has very low accuracy for test samples which are not seen by trained model.
|
|
|
|
|
|
|
|
Here is the little teaser of classification accuracy with many algorithms that are available in scikit-learn for a remote sensing imagery. In near future, I will blog with more illustration and with code. Till then go and make your hands dirty with Python and Scikit-Learn. Make that your new year resolution and trust me, you will thank me for that.
Here, algorithms hyperparameters were not optimally tuned hence superior machine learning algorithms like SVM has very low accuracy for test samples which are not seen by trained model.
No comments:
Post a Comment